Fun and Unusual Lighting Options for the Modern Home

potato light

With Potato Day right around the corner, you may be wondering what the heck kind of decorations you’re going to find this year when you already have spent all your time and money refurbishing your jet skis. Believe it or not, an obvious option may have been spudding right under your nose this entire time: the potato! Turn a potato into a light!

Quick overview of electric currents: an electric current is the movement of electrons from one atom to another in a conductor. A conductor is a substance that can conduct electricity. With that in mind, here’s what you have to do.

lightbulbFind a potato and cut it in half. Get yourself some electrical wire and wrap the end around a galvanized nail. Galvanized nails are nails that have undergone a process which covers them with a zinc protective coating. This coating acts as an anode, meaning it’s a positively charged electrode by which electrons can leave a device. An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit like a semiconductor, an electrolyte, a vacuum or air. In this case, the zinc on our galvanized nail will be acting as an anode that allows for electrons to leave the nail and enter the potato’s electrolytes.

Get a second piece of wire and wrap it around a penny. The penny contains enough copper to act as a cathode, which is also an electrode. An anode is positive while a cathode is negative, so an anode attracts negative charge while a cathode attracts positive charge. Stick the penny into a hole in the potato.

Once you’ve got these two wires with either a penny or a nail at the end, stick the copper side into one half of the potato and the nail into another half. Don’t let the zinc and copper electrodes touch each other. If a wire connects the zinc nail and the copper penny, electrons will flow, but direct contact will just produce heat as opposed to electric current.

cathode anodeWhen you put the metal electrodes into the potato, it causes a reaction to occur that results in electric current. The potato acts as an electrolyte that facilitates the transport of the zinc and copper ions in the solution while keeping the electrodes apart physically. An electrolyte is a liquid or gel that contains ions and can be decomposed by electrolysis; it is a fluid that carries a charge or can produce an electrically conducting solution when dissolved in a polar solvent like water. When it’s put in water, an electolyte separates out into cations and anions, allowing for current to flow. The phosphoric acid of the potato is responsible for the electro-chemical reaction of zinc and copper.

Zinc is an active metal that reacts readily with acid to liberate electrons. The acid’s active ingredient is positively charged hydrogen, so a transfer of electrons occurs between the zinc and the acid. Hydrogen gas is produced and bubbles out around the electrodes. The reaction at the penny electrode depletes the electrons and attaches them to the hydrogen ions in the phosphoric acid.

Now if you attach both ends of the wire to a tiny LED light, it will light up!

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>